The Process Matters: Ensuring Data Veracity in Cyber-Physical Systems Group 8

K. Olsson S. Finnsson

DAT300, 6. Oct 2016

K. Olsson, S. Finnsson (Chalmers University (The Process Matters: Ensuring Data Veracity D.

DAT300, 6. Oct 2016

1 / 36

Introduction

- What is an Industrial Control System?
- Purpose and Design

2 Attacking an ICS

- Network level attacks
- Process level attacks
- Sensor level attacks

3 Tennessee Eastman (TE) process

Tennessee Eastman - General facts

- Approach: Information theory
- Data: Need for discretization
- Entropy: Sensor-specific, plant-wide and cluster-based
- Results

• What is an Industrial Control System?

Purpose and Design

2 Attacking an ICS

- Network level attacks
- Process level attacks
- Sensor level attacks

3 Tennessee Eastman (TE) process

• Tennessee Eastman - General facts

- Approach: Information theory
- Data: Need for discretization
- Entropy: Sensor-specific, plant-wide and cluster-based
- Results

• Industrial control systems (ICS) is an encompassing term for several control systems and instrumentation used in industrial production.¹

¹Industrial control systems, [Online]. Available:

https://en.wikipedia.org/wiki/Industrial_control_system. < > < > >

K. Olsson, S. Finnsson (Chalmers University The Process Matters: Ensuring Data Veracity

- Industrial control systems (ICS) is an encompassing term for several control systems and instrumentation used in industrial production.¹
- They are used to control cyber-physical systems, such as sensors, actuators, motors and more.

¹Industrial control systems, [Online]. Available:

https://en.wikipedia.org/wiki/Industrial_control_system. < > > > >

K. Olsson, S. Finnsson (Chalmers University The Process Matters: Ensuring Data Veracity

- Industrial control systems (ICS) is an encompassing term for several control systems and instrumentation used in industrial production.¹
- They are used to control cyber-physical systems, such as sensors, actuators, motors and more.
- ICS have taken over the responsibilities of older analog systems.

¹*Industrial control systems*, [Online]. Available:

https://en.wikipedia.org/wiki/Industrial_control_system. < > < > > >

K. Olsson, S. Finnsson (Chalmers University The Process Matters: Ensuring Data Veracity

Introduction

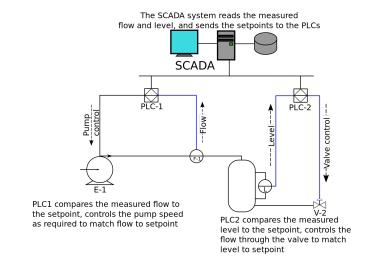
- What is an Industrial Control System?
- Purpose and Design

Attacking an ICS

- Network level attacks
- Process level attacks
- Sensor level attacks

3 Tennessee Eastman (TE) process

• Tennessee Eastman - General facts


- Approach: Information theory
- Data: Need for discretization
- Entropy: Sensor-specific, plant-wide and cluster-based
- Results

• The main purpose of an ICS is to keep an industrial plant up and running as autonomously as possible.

- The main purpose of an ICS is to keep an industrial plant up and running as autonomously as possible.
- In Industrial Processes one of the main considerations is availability and reliability of the systems, such that *uptime* is maximized.

- Simple hardware and simple protocols designed for high uptime, but no security.
- Multiple networks in a single ICS.

ICS - an overview²

²Scada schematic overview, [Online]. Available: 'https: //upload.wikimedia.org/wikipedia/commons/0/0c/SCADA_schematic_overviews.svg'.

K. Olsson, S. Finnsson (Chalmers University The Process Matters: Ensuring Data Veracity

DAT300, 6. Oct 2016 8 / 36

- Large number of communicating devices
- Low inherent security

• What is an Industrial Control System?

• Purpose and Design

2 Attacking an ICS

Network level attacks

- Process level attacks
- Sensor level attacks

Tennessee Eastman (TE) process

• Tennessee Eastman - General facts

- Approach: Information theory
- Data: Need for discretization
- Entropy: Sensor-specific, plant-wide and cluster-based
- Results

• It is possible to attack the IT infrastructure used by the ICS resulting in loss of availability or malicious interference with the process.

- It is possible to attack the IT infrastructure used by the ICS resulting in loss of availability or malicious interference with the process.
- Well known mitigation techniques exist. Firewalls, intrusion detection systems and so on.

- It is possible to attack the IT infrastructure used by the ICS resulting in loss of availability or malicious interference with the process.
- Well known mitigation techniques exist. Firewalls, intrusion detection systems and so on.
- Have we then solved the problem of securing industrial control systems?

What is an Industrial Control System?

• Purpose and Design

2 Attacking an ICS

Network level attacks

Process level attacks

Sensor level attacks

Tennessee Eastman (TE) process

• Tennessee Eastman - General facts

- Approach: Information theory
- Data: Need for discretization
- Entropy: Sensor-specific, plant-wide and cluster-based
- Results

• Attacking the physical process that the ICS controls.

- Attacking the physical process that the ICS controls.
- The process often has to interpret unmeasured quantities. E.g. change in pressure might be the result of temperature, flow or reaction speed.

- Attacking the physical process that the ICS controls.
- The process often has to interpret unmeasured quantities. E.g. change in pressure might be the result of temperature, flow or reaction speed.
- Non monitored equipment and processes can be used to influence other process.

- What is an Industrial Control System?
- Purpose and Design

2 Attacking an ICS

- Network level attacks
- Process level attacks
- Sensor level attacks

Tennessee Eastman - General facts

- Approach: Information theory

• In process automation sensors are considered fully trusted devices and the data they produce is trusted without further validation.

- In process automation sensors are considered fully trusted devices and the data they produce is trusted without further validation.
- Sensors are often closest to the physical process and sometimes the only way to monitor the process.

- In process automation sensors are considered fully trusted devices and the data they produce is trusted without further validation.
- Sensors are often closest to the physical process and sometimes the only way to monitor the process.
- Veracity: The property that an assertion truthfully reflects the aspect it makes a statement about.

- In process automation sensors are considered fully trusted devices and the data they produce is trusted without further validation.
- Sensors are often closest to the physical process and sometimes the only way to monitor the process.
- **Veracity:** The property that an assertion truthfully reflects the aspect it makes a statement about.
- A traditional network security approach is ineffective against these kind of attacks.

• Sensor signal spoofing is not straightforward.

- Sensor signal spoofing is not straightforward.
- It is necessary to mimic the behaviour of the real sensor.

- Sensor signal spoofing is not straightforward.
- It is necessary to mimic the behaviour of the real sensor.
- "Record-and-Playback".

- Sensor signal spoofing is not straightforward.
- It is necessary to mimic the behaviour of the real sensor.
- "Record-and-Playback".
- Runs Analysis, designing noise that is believable to the human operator.

- Sensor signal spoofing is not straightforward.
- It is necessary to mimic the behaviour of the real sensor.
- "Record-and-Playback".
- Runs Analysis, designing noise that is believable to the human operator.
- Triangle Approximation, Creating believable dynamic process behaviour.

- In a sequence of consecutive samples from a sensor, count the number of increasing or decreasing values ("runs up", "runs down")
- Count the distance travelled for each of those runs, up or down. Each run can be characterized by number of consecutive increasing/decreasing values and the distance travelled.
- Example:

 $\begin{bmatrix} 33.47 & 34.73 & 37.77 \end{bmatrix} \rightarrow (+3, 4.3)$

- The average distance travelled by each length of run can then be represented by a single distribution.
- Can be optimized, requires about 400 bytes of memory for combined code and data.

Triangle Approximation I

- Declare a vertex at the first value.
- Choose an arbitrary starting window of size n. Signal smoothing factor s = log n.
- Solution Note minimum and maximum values of the window.
- Oraw a vertical line at sample n. Then draw two lines from the vertex, one through the minimum value and one through the maximum value, ending at the vertical line.
- Solution Declare a vertex at the midpoint of the vertical line at sample n.
- Start drawing a triangle from the vertex on the vertical line.
- Ocount the number of samples above (y) and below (z) the triangle.
- When the number of samples above or below the triangle is above the threshold, y or z > s, draw a vertical line through the current sample and declare a vertex at the midpoint.

- If y < z, increase the slope of the top line and decrease the slope of the bottom line. If y > z do the opposite.
- **(2)** If the number of samples between the current sample and the last vertex is < 4n, increase *n*.
- If no new vertex is created within 4n samples, declare a vertex at the midpoint of the vertical line through the sample and decrease n.
- Go to step 6.

• Network level attacks are well understood and can be combated with classic network security techniques.

- Network level attacks are well understood and can be combated with classic network security techniques.
- Process level attacks are hard to detect and can be devastating due to their nature.

- Network level attacks are well understood and can be combated with classic network security techniques.
- Process level attacks are hard to detect and can be devastating due to their nature.
- Sensor level attacks are feasible and hard to detect with traditional network security techniques as the sensor traffic looks normal.

- Network level attacks are well understood and can be combated with classic network security techniques.
- Process level attacks are hard to detect and can be devastating due to their nature.
- Sensor level attacks are feasible and hard to detect with traditional network security techniques as the sensor traffic looks normal.
- Run analysis and Triangle approximation can be used to spoof realistic dynamic sensor values making it hard for humans to detect.

Outline

- What is an Industrial Control System?
- Purpose and Design

- Network level attacks
- Process level attacks
- Sensor level attacks

Tennessee Eastman (TE) process 3

Tennessee Eastman - General facts

- Approach: Information theory

• Model of an industrial chemical process³

- Model of an industrial chemical process³
- Complex model

³J. Downs and E. Vogel, "A plant-wide industrial process control problem," *Computers & Chemical Engineering*, vol. 17, no. 3, pp. 245-255, 1993. DOI: http://www.sciencedirect.com/science/article/pii/d09843549380018I. = Doc

- Model of an industrial chemical process³
- Complex model
 - 4 reactants \longrightarrow 2 products

³J. Downs and E. Vogel, "A plant-wide industrial process control problem," Computers & Chemical Engineering, vol. 17, no. 3, pp. 245-255, 1993. DOI: http://www.sciencedirect.com/science/article/pii/0098435493800188I. = cog

- Model of an industrial chemical process³
- Complex model
 - 4 reactants \longrightarrow 2 products
 - 41 measurements

- Model of an industrial chemical process³
- Complex model
 - 4 reactants \longrightarrow 2 products
 - 41 measurements
 - 12 adjustable variables

³J. Downs and E. Vogel, "A plant-wide industrial process control problem," *Computers & Chemical Engineering*, vol. 17, no. 3, pp. 245-255, 1993. DOI: http://www.sciencedirect.com/science/article/pii/009843549380018I. = •

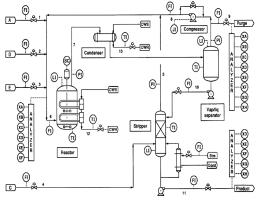


Fig. 1. Tennessee Eastman test problem

 ⁴ J. Downs and E. Vogel, "A plant-wide industrial process control problem," *Computers & Chemical Engineering*, vol. 17, no. 3, pp. 245–255, 1993 DOI: *
⁵ K. Olsson, S. Finnsson (Chalmers University The Process Matters: Ensuring Data Veracity DAT300, 6. Oct 2016

. J. DOWNS and E. F. V

23 / 36

¥

Outline

• What is an Industrial Control System?

• Purpose and Design

2 Attacking an ICS

- Network level attacks
- Process level attacks
- Sensor level attacks

3 Tennessee Eastman (TE) process

Tennessee Eastman - General facts

Detection

• Approach: Information theory

- Data: Need for discretization
- Entropy: Sensor-specific, plant-wide and cluster-based
- Results

• Entropy: Randomness of information measured

- Entropy: Randomness of information measured
- For a discrete random variable X, with possible outcomes (values) $\{x_1, \ldots, x_n\}$, the entropy H(X) is given by:

$$H(X) = \sum_{i=1}^{n} P(x_i) \cdot \log_{a} \left(\frac{1}{P(x_i)}\right)$$

, where $P(x_i)$ is the probability of symbol x_i occuring.

Outline

• What is an Industrial Control System?

• Purpose and Design

2 Attacking an ICS

- Network level attacks
- Process level attacks
- Sensor level attacks

Tennessee Eastman (TE) process

• Tennessee Eastman - General facts

Detection

- Approach: Information theory
- Data: Need for discretization
- Entropy: Sensor-specific, plant-wide and cluster-based
- Results

- TE process model:
 - Double-precision floating point format

- Double-precision floating point format
- For each exponent: approximately 10¹⁶ variations

- Double-precision floating point format
- For each exponent: approximately 10¹⁶ variations
- Remember the definition of entropy:

$$H(X) = \sum_{i=1}^{n} P(x_i) \cdot \log_2\left(\frac{1}{P(x_i)}\right)$$

- Double-precision floating point format
- For each exponent: approximately 10¹⁶ variations
- Remember the definition of entropy:

$$H(X) = \sum_{i=1}^{n} P(x_i) \cdot \log_2\left(\frac{1}{P(x_i)}\right)$$

•
$$n \ll 10^{16} \Rightarrow P(X) \sim Uniform$$

- Double-precision floating point format
- \bullet For each exponent: approximately 10^{16} variations
- Remember the definition of entropy:

$$H(X) = \sum_{i=1}^{n} P(x_i) \cdot \log_2\left(\frac{1}{P(x_i)}\right)$$

•
$$n \ll 10^{16} \Rightarrow P(X) \sim Uniform$$

• Each simulation would result in identical entropy

• Method: Binning, but ...

- Method: Binning, but ...
- ... limited amount of bins would result in excessive number of mapping collisions

- Method: Binning, but ...
- ... limited amount of bins would result in excessive number of mapping collisions
- Solution: quantize without limiting number of bins. For all $z \in \mathbb{R}$: $\lfloor |z| \rfloor = x \in \mathbb{N}_0$, and $\lfloor 10 \cdot (|z| - x) \rfloor = y \in \mathbb{N}_0$, then $f(z) \in \mathbb{Z}$ is defined as

- Method: Binning, but ...
- ... limited amount of bins would result in excessive number of mapping collisions
- Solution: quantize without limiting number of bins. For all $z \in \mathbb{R}$: $\lfloor |z| \rfloor = x \in \mathbb{N}_0$, and $\lfloor 10 \cdot (|z| - x) \rfloor = y \in \mathbb{N}_0$, then $f(z) \in \mathbb{Z}$ is defined as

$$f(z) = \begin{cases} -(10 \cdot x + y), & \text{for } z < 0\\ 0, & \text{for } z = 0\\ (10 \cdot x + y), & \text{for } z > 0 \end{cases}$$

Outline

• What is an Industrial Control System?

• Purpose and Design

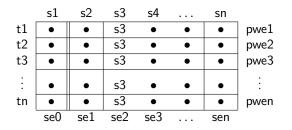
2 Attacking an ICS

- Network level attacks
- Process level attacks
- Sensor level attacks

Tennessee Eastman (TE) process

Tennessee Eastman - General facts

Detection


- Approach: Information theory
- Data: Need for discretization
- Entropy: Sensor-specific, plant-wide and cluster-based
- Results

Entropy: Sensor-specific, plant-wide and cluster-based

• Sensor-specific and plant-wide entropy

- Sensor-specific and plant-wide entropy
 - Sensor-specific entropy (se) is calculated for one particular sensor over a period of time (*n* number of samples). Plant-wise entropy (pwe) on the other hand is calculated at a given sample time for all sensors (*n* number of sensors) simultaneously. The combined entropy matrix looks like this:

- Sensor-specific and plant-wide entropy
 - Sensor-specific entropy (se) is calculated for one particular sensor over a period of time (*n* number of samples). Plant-wise entropy (pwe) on the other hand is calculated at a given sample time for all sensors (*n* number of sensors) simultaneously. The combined entropy matrix looks like this:

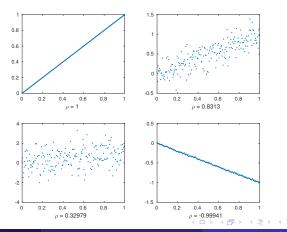
Entropy: Sensor-specific, plant-wide and cluster-based (continued)

- Sensor-specific and plant-wide entropy
 - Plant-wide entropy can effectively detect anomalies that affect multiple sensor measurements simultaneously. However, it cannot specify from which sensor(s) the disturbance originates.

Entropy: Sensor-specific, plant-wide and cluster-based (continued)

- Sensor-specific and plant-wide entropy
 - Plant-wide entropy can effectively detect anomalies that affect multiple sensor measurements simultaneously. However, it cannot specify from which sensor(s) the disturbance originates.
 - Entropy for a specific sensor is calculated so that the affected sensor can be located. However, if the attacker is able to spoof the signal, sensor-specific entropy is rendered useless.

Entropy: Cluster-based


• Notion: calculate entropy in clusters based on sensor correlation ρ

$$\rho = \frac{\operatorname{cov}\left(X,Y\right)}{\sigma_X \cdot \sigma_Y}$$

Entropy: Cluster-based

• Notion: calculate entropy in clusters based on sensor correlation ρ

$$\rho = \frac{\operatorname{cov}\left(X,Y\right)}{\sigma_X \cdot \sigma_Y}$$

K. Olsson, S. Finnsson (Chalmers University The Process Matters: Ensuring Data Veracity

• Consider ρ between each of the 41 measurements from the TE model.

 Consider ρ between each of the 41 measurements from the TE model. The resulting matrix can be considered an adjacency graph with weighted edges.

- Consider ρ between each of the 41 measurements from the TE model. The resulting matrix can be considered an adjacency graph with weighted edges.
- Cluster graph with respect to edge weights (correlation between measurements)

- Consider ρ between each of the 41 measurements from the TE model. The resulting matrix can be considered an adjacency graph with weighted edges.
- Cluster graph with respect to edge weights (correlation between measurements)
- Graph partitioning software METIS⁵ used for initial clustering. Deciding number of clusters challenging - for TE process $\approx 10-13$

- Consider ρ between each of the 41 measurements from the TE model. The resulting matrix can be considered an adjacency graph with weighted edges.
- Cluster graph with respect to edge weights (correlation between measurements)
- Graph partitioning software METIS⁵ used for initial clustering. Deciding number of clusters challenging - for TE process $\approx 10-13$
- Time-window (period over which entropy was calculated) set to 45 minutes (75 samples) and smoothing of the sensor signals applied. At first non-overlapping time-windows used resulting in poor detecting capabilities for weakly correlated sensors. Also large variation in entropy outside attack-window.

- Consider ρ between each of the 41 measurements from the TE model. The resulting matrix can be considered an adjacency graph with weighted edges.
- Cluster graph with respect to edge weights (correlation between measurements)
- Graph partitioning software METIS⁵ used for initial clustering. Deciding number of clusters challenging - for TE process pprox 10-13
- Time-window (period over which entropy was calculated) set to 45 minutes (75 samples) and smoothing of the sensor signals applied. At first non-overlapping time-windows used - resulting in poor detecting capabilities for weakly correlated sensors. Also large variation in entropy outside attack-window.
- To solve these weaknesses a sliding time-window was used to calculate the entropy. Downside is a delay for the uncorrelated samples to dominate entropy.

⁵*Metis* - family of graph and hypergraph partitioning software, [Online]. Available: 33 / 36

Outline

• What is an Industrial Control System?

• Purpose and Design

2 Attacking an ICS

- Network level attacks
- Process level attacks
- Sensor level attacks

Tennessee Eastman (TE) process

• Tennessee Eastman - General facts

Detection

- Approach: Information theory
- Data: Need for discretization
- Entropy: Sensor-specific, plant-wide and cluster-based
- Results

- Ability to detect attacks
 - Can effectively detect questionable veracity in changes to the data

- Ability to detect attacks
 - Can effectively detect questionable *veracity* in changes to the data
 - Still able to detect anomalies when the attacker has knowledge of the sensor clustering
- Complexities not fully resolved

- Ability to detect attacks
 - Can effectively detect questionable *veracity* in changes to the data
 - Still able to detect anomalies when the attacker has knowledge of the sensor clustering
- Complexities not fully resolved
 - Wrongful inclusion of sensor in cluster produces false positive alarms.

Ability to detect attacks

- Can effectively detect questionable *veracity* in changes to the data
- Still able to detect anomalies when the attacker has knowledge of the sensor clustering
- Complexities not fully resolved
 - Wrongful inclusion of sensor in cluster produces false positive alarms.
 - If cluster consists of similar signals (type and scale), spoofing all of them using just one signal will result in cluster that is both *plausible* and *correlated*. Important to form clusters from signals of different types and scales.

• ICS systems are often legacy system that require high uptime. This gives rise to outdated and vulnerable hardware, protocols and system design.

- ICS systems are often legacy system that require high uptime. This gives rise to outdated and vulnerable hardware, protocols and system design.
- Sensor noise and Dynamic process behaviour can be believably spoofed

- ICS systems are often legacy system that require high uptime. This gives rise to outdated and vulnerable hardware, protocols and system design.
- Sensor noise and Dynamic process behaviour can be believably spoofed
- Tennessee Eastman process is useful as a testbed

- ICS systems are often legacy system that require high uptime. This gives rise to outdated and vulnerable hardware, protocols and system design.
- Sensor noise and Dynamic process behaviour can be believably spoofed
- Tennessee Eastman process is useful as a testbed
- Entropy- and cluster-based detection is a viable approach.